

Synthesis of tris(dinitrogen) iron(0) complexes stabilized by organosilicon ligands

R. Ishii, ${ }^{[a]}$ Y. Sunada ${ }^{[a][b]}$
${ }^{[a]}$ Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguroku, Tokyo 153-8505 Japan.
${ }^{[b]}$ Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 Japan.

It is known that iron dinitrogen complexes can function as highly active catalysts and often be used as an alternative of noble metal catalysts ${ }^{[1]}$. Furthermore, conversion reactions of coordinated dinitrogen molecules have also attracted much attentions ${ }^{[2]}$. Construction of low-valent and electron-rich iron centers could be considered as an efficient way to improve the reactivity of iron dinitrogen complexes. In this study, we focused on the introduction of strong σ-donating organosilicon ligands, and novel iron(0) dinitrogen complexes bearing two silyl ligands were was synthesized. First, complex 2 was synthesized by two-electron reduction of iron(II) disilyl complex 1 using KC_{8} under a dinitrogen atmosphere (Scheme 1). Molecular structure of 2 was determined by X-ray diffraction analysis, and the ORTEP drawing of 2 is depicted in Figure 1. In complex 2, the iron center adopts a pseudo-trigonal bipyramidal coordination geometry with three dinitrogen ligands. Subsequently, FT-IR spectra were measured to evaluate the degree of activation of dinitrogen molecules in complex 2. Absorption bands attributed to $\mathrm{N} \equiv \mathrm{N}$ stretching vibration appeared at $1882 \mathrm{~cm}^{-1}$, suggesting that dinitrogen molecules are strongly activated. The reactivity of complex 2 were also investigated.

Scheme 1. Synthesis of iron(0) dinitrogen complex 2

Selected bond distances (\AA) and angles (deg): Fe1-Si1 = 2.3788(8), Fe1-N1 = 1.793(3), Fe1-N3 $=1.791(2), \mathrm{N} 1-\mathrm{N} 2=1.129(5), \mathrm{N} 3-\mathrm{N} 4=1.146(4)$, $\mathrm{Si} 1-\mathrm{Fe} 1-\mathrm{Si1}=172.30(4)$.

Top view of complex 2
Figure 1. ORTEP drawing of complex 2.
Hydrogen atoms and counter cations are omitted for clarity.

References

[1] S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 13794-13807.
[2] Y. Lee, N. P. Mankad, J. C. Peters, Nat. Chem. 2010, 2, 558-565.

