Synthesis of tris(dinitrogen) iron(0) complexes stabilized by organosilicon ligands

R. Ishii,[a] Y. Sunada[a][b]

[a] Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 Japan.
[b] Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 Japan.

It is known that iron dinitrogen complexes can function as highly active catalysts and often be used as an alternative of noble metal catalysts[1]. Furthermore, conversion reactions of coordinated dinitrogen molecules have also attracted much attentions[2]. Construction of low-valent and electron-rich iron centers could be considered as an efficient way to improve the reactivity of iron dinitrogen complexes. In this study, we focused on the introduction of strong \(\sigma \)-donating organosilicon ligands, and novel iron(0) dinitrogen complexes bearing two silyl ligands were was synthesized. First, complex \(2 \) was synthesized by two-electron reduction of iron(II) disilyl complex \(1 \) using \(\text{KCl}_2 \) under a dinitrogen atmosphere (Scheme 1). Molecular structure of \(2 \) was determined by X-ray diffraction analysis, and the ORTEP drawing of \(2 \) is depicted in Figure 1. In complex \(2 \), the iron center adopts a pseudo-trigonal bipyramidal coordination geometry with three dinitrogen ligands. Subsequently, FT-IR spectra were measured to evaluate the degree of activation of dinitrogen molecules in complex \(2 \). Absorption bands attributed to \(\text{N} \equiv \text{N} \) stretching vibration appeared at \(1882 \text{ cm}^{-1} \), suggesting that dinitrogen molecules are strongly activated. The reactivity of complex \(2 \) were also investigated.

\[\begin{align*}
\text{Me}_3\text{Si}_2\text{Si} & \quad \text{THF} \\
\text{THF} & \quad \text{KCl}_2 (\text{2 equiv.}) \\
\text{cryptand} [2.2.2] (\text{2 equiv.}) & \quad \text{DME, N}_2 \\
\text{Fe} & \quad [\text{K(cryptand)}]_2
\end{align*} \]

Scheme 1. Synthesis of iron(0) dinitrogen complex \(2 \)

Selected bond distances (\(\text{Å} \)) and angles (deg):

\begin{align*}
\text{Fe}1–\text{Si}1 &= 2.3788(8), \text{Fe}1–\text{N}1 = 1.793(3), \text{Fe}1–\text{N}3 = 1.791(2), \text{N}1–\text{N}2 = 1.129(5), \text{N}3–\text{N}4 = 1.146(4), \\
\text{Si}1–\text{Fe}1–\text{Si}1 &= 172.30(4).
\end{align*}

Figure 1. ORTEP drawing of complex \(2 \). Hydrogen atoms and counter cations are omitted for clarity.

References