


Iminophosphonamido-Supported Silyliumylidene: Synthesis and Properties

Norio Nakata,^[a] Kazuki Nakaya,^[a] Yugo Kazama,^[a] and Akihiko Ishii^[a]

^[a] Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan

Silyliumylidenes ([RSi:]⁺) have attracted considerable attention due to their unique structures and properties. These species possess a lone pair of electrons and two vacant p-orbitals on the monovalent silicon(II) center, which endows them with high Lewis-acidic properties and the amphiphilic character typical of silylenes. While a number of three-coordinated silyliumylidenes have been reported in recent decades, research on the two-coordinated derivatives has remained limited.

In our recent work, we have focused on synthesizing strong σ -donating tetrylenes.¹⁻⁴ For example, iminophosphonamido-supported chlorosilylenes [Ph₂P(NR)₂SiCI] exhibit unprecedented coordination behavior toward transition-metal fragments and unique reactivity with nucleophiles due to their strong σ -donating properties. Here, we present the synthesis and properties of a two-coordinated silyliumylidene of the type [Ph₂P(NDip)₂Si:][B(C₆F₅)₄] (**1**[B(C₆F₅)₄], Dip = 2,6-^{*i*}Pr₂C₆H₃), wherein the silicon(II) center is stabilized by an iminophosphonamide ligand. We also describe unique reactivities of **1**[B(C₆F₅)₄] such as H₂ activation, cycloaddition, and coordination chemistry toward Group 10 metal complexes.

References

- 1. S. Takahashi, J. Sekiguchi, A. Ishii, N. Nakata, Angew. Chem. Int. Ed. 2021, 60, 4055–4059.
- 2. S. Takahashi, A. Ishii, N. Nakata, Chem. Commun. 2021, 57, 3203–3206.
- 3. S. Takahashi, A. Ishii, N. Nakata, Chem. Commun. 2021, 57, 6728–6731.
- 4. S. Takahashi, J. Sekiguchi, K. Nakaya, A. Ishii, N. Nakata, Inorg. Chem. 2022, 61, 7266–7273.