

SYNTHESIS OF HOLLOW PERIODIC MESOPOROUS ORGANOSILICA NANOPARTICLES (HPMO-NPs) FOR THERANOSTIC APPLICATIONS

Imane El Moujarrad,^{1,2*}, Manisa Kongkaew,³ Rozenn Le Parc,¹ Carole Carcel,³ Guillaume Toquer,⁴ Philippe Trens,³ David Maurin,¹ Corentin Gauthier,^{5,6}Magali Gary-Bobo,⁵ Philippe Dieudonné,¹ Luís D. Carlos, ² Michel Wong Chi Man,³ Jean-Louis Bantignies^{1*},

Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier, Montpellier, France
Phantom-g, CICECO – Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

6 NanoMedSyn, 15 avenue Charles Flahault, Montpellier, France

Much work has been devoted to the development of mesoporous organosilica nanoparticles (MO-Nps) for several applications (Bioimaging, drug loading/delivery, catalysis). The mesopores, obtained with a surfactant (soft template route, STR), are a key parameter as they allow high drug loading. MO-Nps are formed by grafting method and by co-condensation of organosilanes with TEOS. The hydrolysis of organo-bridged silanes gives TEOS-free hybrids called Bridged silsesquioxanes (BS) (Fig. 1, Top). Using the STR, hybrid silica called PMO (Periodic Mesoporous Organosilica) with interesting high organic content are formed and PMO-Nps with hierarchical structures can be designed¹. Recently mesoporous hybrid silica Nps with variable structures have been reported (Core/shell and Yolk/shell, etc)² and PMO-Nps turned out to be a promising platform for several applications. We are interested in designing such multifunctional nanoplatforms for theranostic applications. Our work is focused on the synthesis of Hollow PMO Nps (HPMO-NPs) with a controlled core cavity and a PMO shell. To engineer these porosities, we used subsequently two templating routes: (1) silica spheresI as hard template to form the core cavity and (2) CTAB as soft template and BTEB (1,4-Bis-triethoxysilylbenzene) to achieve the mesoporous PMO shell (Fig. 1, Bottom). Na₂CO₃ and HCl are used to successively deliver the two kinds of porosity. Core silica with fixed diameters allow to control HPMO-NPs sizes and also the core cavity. An extension to multi-shell HPMO-NPs will also be presented.

Figure 1: Synthesis of BS and HPMO-Nps

References

[1] J. G. Croissant, X. Cattoën, J-O. Durand, M. Wong Chi Man, N. M. Kashab Nanoscale 2016, 8, 19945-19972.

[2] Y. Chen, J. L. Shi Adv. Mater. 2016, 28, 3235-32722-