Amino Acids Functionalized MCM-41 synthesized from Rice Husk

Lilia SENNOUN[a], Chun-Cheng LEE[a], Margaux CLAVIÉ[b], Gilles SUBRA[b], Anne GALARNEAU[a], Peter HESEMANN[a], Ahmad MEHDI[a]

[a] Institut Charles Gerhardt Montpellier (ICGM), Univ Montpellier, CNRS, ENSCM, Montpellier, France.
[b] Institut des Biomolécules Max Mousseron (IBMM), Univ Montpellier, CNRS, ENSCM, Montpellier, France.

Nowadays, mesoporous silica materials cover a large panel of applications in chemistry, biology and material science (e.g., catalysis, separation, drug delivery). Among them, MCM-41 materials are of great interest as they feature the highest surface area (~1000 m²/g), regular architecture on the mesoscale with narrow pore size distribution and mesopore diameters adjustable in the range 2-10 nm [1]. In order to reduce the cost of the synthesis and to develop circular economy, MCM-41 can be synthesized using an agricultural waste, i.e., Rice Husk (RH) [2]. RH contains 10-20 wt% silica, 1-3 wt% metallic impurities, 90-80 wt% organics (26 wt% lignine, 50 wt% hemicellulose, cellulose).

Our study focuses on improving the acid leaching of RH and the calcination processes to reach silica materials featuring surface area as high as 300 m²/g. To achieve this goal, metallic impurities need firstly to be removed by acid leaching to avoid the formation of cristoballite. Otherwise, this material cannot be transformed into MCM-41 due to its low porosity. The resulting silica from RH is then directly functionalized by different amino-acid silanes and simultaneously transformed into MCM-41 via pseudomorphic transformation [3] (Fig. 1).

![Fig. 1 – Schematic representation of the transformation of Rice Husk into Amino Acids functionalized MCM-41 materials.](image)

References