

Transition Metal-Silicon Chemistry in
 Bond Activations and Chemical Transformations

T. D. Tilley ${ }^{[a]}$ and R. C. Handford ${ }^{[a]}$
${ }^{[a]}$ Department of Chemistry, University of California, Berkeley, Berkeley, California, USA 94720

Given the economic importance of silicon-based polymers, coupling agents, and chemical reagents, it is of interest to develop new and more efficient transformations involving silicon-element bonds. In this respect, transition metals have already played a central role in the inception and growth of the organosilicon industry. For example, the Direct Process enables the silicones industry by utilizing a copper silicide catalyst to convert elemental silicon and MeCl to the $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ monomer. Analogously, various transition-metal silicide nanoparticles are used to mediate the reverse chemical process, to grow silicon nanowires via decomposition of molecular silane species at the silicide surface. Another important silicon-carbon bond-forming reaction, olefin hydrosilylation, provides specialty monomers and cross-linked silicone polymers, and employs platinumbased catalysts. Because this reaction is also practiced on a very large scale and is percieved as unsustainable given its reliance on platinum, there is a strong need for alternative catalysts. Consistently, there is long-standing interest in transition-metal silicon chemistry and reactive structures that may serve as intermediates in new or more efficient catalytic transformations. Among these are $\mathrm{Si}-\mathrm{H}$ sigma complexes, complexes with multiple bonds between a metal and silicon, and complexes with only metal-silicon bonds (silicides). This presentation will focus on the synthesis of such compounds and explorations of their chemical properties, including new catalytic pathways that utilize of these structures.

References

1. R. C. Handford, P. W. Smith, T. D. Tilley, J. Am. Chem. Soc. 2019, 141, 8769-8772.
2. R. C. Handford, T. Nguyen, S. Teat, R. Britt and T. D. Tilley, J. Am. Chem. Soc. 2023, 145, 3031-3039.
